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So what is Ironclad?

● POSIX-compatible formally-
verified (to an extent) 
kernel.

● Hard real-time facilities and 
flexible scheduling.

● Highly portable.
● Free as in freedom.



  

What are the goals of Ironclad?

● A highly secure 
architecture.

● Hard real-time suitability 
without compromising 
general purpose computing.

● Doing so keeping in mind 
POSIX compatibility.



  

Operating system architecture



  

Operating system architecture



  

So, what makes Ironclad special?



  

Mandatory Access Control (MAC)
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Mandatory Access Control (MAC)
type Capabilities is record
   Can_Change_Scheduling : Boolean;
   Can_Spawn_Others      : Boolean;
   ...
end record;

type Context is record
   Action  : Enforcement;
   Caps    : Capabilities;
   Limits  : Limit_Arr;
   Filters : Filter_Arr (1 .. 30);
end record;



  

Scheduling

● Processes: 
Owns a memory 
map, threads, 
open files.

● Thread-cluster: 
Groups threads 
regardless of 
process and 
coordinates them.

● Threads: Basic 
unit of processor 
execution, has a 
set of registers 
and stack.



  

Scheduling



  

Formal verification

● 3 tiers.
● Architectural code that is 

difficult to verify or can be 
reasonably verified to a 
lesser standard.

● Easily verifiable 
architecture-independent 
code.



  

Formal verification

--  Set the user id associated with a process.

procedure Set_UID (Proc : PID; UID : Unsigned_32)

with Global => (In_Out => (Proc_Lock, Proc_Registry),               
     Pre    => Is_Valid (Proc) and UID >= 1000,                     
     Post   => Get_UID (Proc) = UID;

   
procedure Set_UID (Proc : PID; UID : Unsigned_32) is

begin

   Registry (Proc).User := UID;

end Set_UID;



  

How do these benefits extend to userland?

// Set the real and effective user Ids

// to 1000.

int err = setuids(1000, 1000);

● We never have to leave 
formally verified code!

mov $59, %rax

mov $1000, %rdi

mov $1000, %rsi

syscall # <- Straight to Ironclad!



  

Limitations of POSIX and userland verification

   ssize_t read(int fd, void *buffer, size_t count);

           Global state is not properly encapsulated!



  

Limitations of POSIX and userland verification

   ssize_t read(int fd, void *buffer, size_t count);            
               // FD is a socket.
               // FD is non blocking, so no waiting.
               // And this goes all the way up the chain... 

           Global state is not properly encapsulated!



  

What’s next for Ironclad

● Finishing the last bells and wistles to get Xorg and a proper 
desktop environment to run.

● Do a port to riscv-based boards, like the visionfive series.
● Expand the existing networking to more network cards.

Follow the progress, check the source code, or download 
distributions at https://ironclad.cx
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Thanks to

● Mintsuki <https://github.com/mintsuki>
● Lucretia <https://github.com/lucretia>
● Ineiev <https://savannah.gnu.org/users/ineiev>

https://github.com/mintsuki
https://github.com/lucretia
https://savannah.gnu.org/users/ineiev
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