

Ironclad
A formally verified OS kernel written in SPARK and Ada.

<streaksu@protonmail.com>
Ada Monthly Meetup - Sat, Nov 4, 2023

mailto:streaksu@protonmail.com

So what is Ironclad?

● POSIX-compatible formally-
verified (to an extent)
kernel.

● Hard real-time facilities and
flexible scheduling.

● Highly portable.
● Free as in freedom.

What are the goals of Ironclad?

● A highly secure
architecture.

● Hard real-time suitability
without compromising
general purpose computing.

● Doing so keeping in mind
POSIX compatibility.

Operating system architecture

Operating system architecture

So, what makes Ironclad special?

Mandatory Access Control (MAC)

Mandatory Access Control (MAC)

Mandatory Access Control (MAC)

Mandatory Access Control (MAC)

Mandatory Access Control (MAC)

Mandatory Access Control (MAC)

Mandatory Access Control (MAC)
type Capabilities is record
 Can_Change_Scheduling : Boolean;
 Can_Spawn_Others : Boolean;
 ...
end record;

type Context is record
 Action : Enforcement;
 Caps : Capabilities;
 Limits : Limit_Arr;
 Filters : Filter_Arr (1 .. 30);
end record;

Scheduling

● Processes:
Owns a memory
map, threads,
open files.

● Thread-cluster:
Groups threads
regardless of
process and
coordinates them.

● Threads: Basic
unit of processor
execution, has a
set of registers
and stack.

Scheduling

Formal verification

● 3 tiers.
● Architectural code that is

difficult to verify or can be
reasonably verified to a
lesser standard.

● Easily verifiable
architecture-independent
code.

Formal verification

-- Set the user id associated with a process.

procedure Set_UID (Proc : PID; UID : Unsigned_32)

with Global => (In_Out => (Proc_Lock, Proc_Registry),
 Pre => Is_Valid (Proc) and UID >= 1000,
 Post => Get_UID (Proc) = UID;

procedure Set_UID (Proc : PID; UID : Unsigned_32) is

begin

 Registry (Proc).User := UID;

end Set_UID;

How do these benefits extend to userland?

// Set the real and effective user Ids

// to 1000.

int err = setuids(1000, 1000);

● We never have to leave
formally verified code!

mov $59, %rax

mov $1000, %rdi

mov $1000, %rsi

syscall # <- Straight to Ironclad!

Limitations of POSIX and userland verification

 ssize_t read(int fd, void *buffer, size_t count);

 Global state is not properly encapsulated!

Limitations of POSIX and userland verification

 ssize_t read(int fd, void *buffer, size_t count);
 // FD is a socket.
 // FD is non blocking, so no waiting.
 // And this goes all the way up the chain...

 Global state is not properly encapsulated!

What’s next for Ironclad

● Finishing the last bells and wistles to get Xorg and a proper
desktop environment to run.

● Do a port to riscv-based boards, like the visionfive series.
● Expand the existing networking to more network cards.

Follow the progress, check the source code, or download
distributions at https://ironclad.cx

Thanks to

Thanks to

● Mintsuki <https://github.com/mintsuki>
● Lucretia <https://github.com/lucretia>
● Ineiev <https://savannah.gnu.org/users/ineiev>

https://github.com/mintsuki
https://github.com/lucretia
https://savannah.gnu.org/users/ineiev

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

